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Abstract. Mathematical techniques have a long and rich history in ecology, often serving as a virtual lab-
oratory to test hypotheses, generate novel predictions, and investigate underlying ecological mechanisms.
Recently, novel simulation techniques, advances in computing power, and numerical methods for imple-
menting statistical models have significantly advanced our ability to integrate empirical and theoretical
ecology. However, a divide still remains between mathematical and empirical studies, their readership,
and integration into the broader literature. Because insights from mathematical ecology are far more gen-
eral than the techniques employed, limitations in communicating mathematical advances to a broad spec-
trum of ecologists have arguably hindered ecology’s progress, particularly in confronting theoretical
predictions with empirical experiments and data. Here, we present a guide for both authors and readers of
mathematical ecology, with the aim of increasing the accessibility of mathematical ecology for a broad
group of ecologists. We provide a list of best practices when both writing and reading mathematical ecol-
ogy, incorporating examples from this Special Feature of Ecosphere. This guide complements current guides
for writing science, focusing specifically on effective communication of mathematics.
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INTRODUCTION

Ecology and its various subfields have a long
history of close synergy between mathematics
and empiricism across theory, statistics, and
more recently with the integration of computer
science and machine learning. Foundational
mathematical theories dating back to the early
1900s played critical roles in shaping both the
historical path and current focus of ecological
research, such as in examining invasion and
range expansions (Skellam 1951, Hastings et al.

2005), population dynamics and species interac-
tions (Lotka 1925, Volterra 1926, Ricker 1954,
May 2001), and disease spread (Ross 1911, Ker-
mack and McKendrick 1927, Keeling and Rohani
2008). Furthermore, ecological applications are
central to the development of modern applied
statistics (Efron 1998, Hald 1998). More recently,
spurred on by novel computational techniques,
increased computing power, and the rise of “big
data,” new areas of mathematical ecology have
emerged (Table 1). These include complex sys-
tems science (Dunne et al. 2002, Grimm et al.
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2005), the application of Bayesian modeling
(Hobbs and Hooten 2015, Weiss-Lehman et al.
2017), and machine learning approaches (Peters
et al. 2014, Martin et al. 2018)—elements of
which are also components of the emerging field
of computational ecology (Poisot et al. 2019). As
implied in this list, we take a broad view of what
constitutes mathematical ecology, considering it
to include theoretical and system-specific models
as well as statistical and computational tools,
particularly those that are not yet standard tools
of ecology. Mathematical ecology, thus broadly
defined, continues to push our field forward by
connecting theoretical and methodological
developments to ecological applications (Elith et

al. 2011) and represents a virtual laboratory
where we can test hypotheses, generate novel
predictions, and investigate mechanisms under-
pinning observed patterns (Petrovskii 2018).
In practice, however, a divide often occurs,

where mathematically complex papers are most
frequently read by like-minded scientists and
reach empiricists less frequently (Fawcett and
Higginson 2012a, Kane 2012). For many papers,
especially those introducing new or new-to-
ecology mathematical and computational tech-
niques, mathematical content is central to the
heart of the manuscript, and therefore must be
communicated effectively to maximize impact on
the field. Because the insights from mathematical

Table 1. Recent subfields in mathematical ecology.

Method Description and origin
Common applications within

ecology Selected references

Machine
learning

A discipline within computer
science where computational
algorithms built on sample,
training datasets make
predictions or classifications of
novel datasets. Inspired by the
structure of the human brain,
applications of machine
learning algorithms in day to
day life range from email
intelligence to image or vocal
classification, and medical
diagnoses.

Image recognition, Acoustic
recognition, Image processing in
GIS, Species distribution
modeling

Martin et al. (2018), Christin et al.
(2019), Tabak et al. (2019), Lucas
(2020), Harte and Newman
(2014)

Complex
systems
science

The study of large-scale systems
where the collective behavior of
components cannot be
understood as the sum behavior
of the individual components.
Insights from chaos theory were
crucial in the development of
complex systems theory.

Network theory, especially as
applied to food webs and
microbial ecology
Individual-based modeling,
Chaotic dynamics, Multi-scale
systems

West et al. (1999), Dunne et al.
(2002), Grimm et al. (2005),
McCreery et al. (2016), Ponisio
et al. (2019), Liu et al. (2020),
Zamkovaya et al. (2021)

Bayesian
modeling

A method of statistical inference
where Bayes’ theorem is applied
to update the probability of a
random event as more evidence
becomes available. While Bayes’
theorem has a long history, its
applications are relatively recent
and rely on novel computational
techniques and increased
computing power.

Population dynamics and
extinction risks, Multispecies
communities
Foraging dynamics

Ellison (2004), Hobbs and Hooten
(2015), Carpenter et al. (2017),
Goodrich et al. (2018), Conn
et al. (2018)

Structural
equation
modeling
(SEM)

A multivariate statistical analysis
technique used to analyze
relationships between measured
and latent variables that cannot
be measured. SEM techniques
were initiated by geneticists in
the early 20th century and were
popularized by social scientists.

Aquatic ecosystem ecology, Soil
ecology, Plant Community
Ecology

Grace et al. (2010), Pugesek et al.
(2003), Jonsson and Wardle
(2010), Firn et al. (2019)
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ecology are often far more general than the con-
text of an individual study, limitations in com-
municating mathematical advances in ways that
are approachable to a broad spectrum of ecolo-
gists have arguably hindered progress in ecology,
particularly in confronting theoretical predictions
with data (Fig. 1). In this Special Feature, the
included manuscripts highlight the current state
of mathematical ecology across a diversity of
subfields, its generality to empirical systems, and
the integration of mathematical modeling with
empirical perspectives. Here, we, a group of
authors who use different combinations of
empiricism, theory, and statistical/computational
approaches in our own work, consider how to
improve communication of mathematical ecol-
ogy in scientific papers. Although this effort is
germane to a broader contemporary conversa-
tion on quantitative training in ecology (Hobbs
and Ogle 2011, Thompson et al. 2013), we focus
on strategies for effective communication in the
context of scientific papers and intend our rec-
ommendations to be pertinent to ecologists at
many career stages.

Guides on scientific writing are abound for
both students (Bolker 1998, Turbek et al. 2016)

and established scientists (Sand-Jensen 2007, Sil-
via 2007, Schimel 2012, Heard 2016). However,
much less has been written, especially in the
peer-reviewed literature, about the effective sci-
entific communication of mathematical con-
structs (but see Scheinerman 2011). Mathematical
notation can be considered its own “language”
with conventions that aid those that are already
fluent in its notation, but can inadvertently serve
as a gatekeeper for more broad communication.
Many ecologists are primarily self-taught in
mathematics and its communication (especially
as applied to ecology), exemplifying the need for
a guide.
While many techniques of effective science

writing also apply to mathematical ecology,
unique requirements and challenges also arise
(Box 1). These challenges exist both for effective
communication by the author and for compre-
hension of readers—especially those new to
reading papers with advanced mathematical
content. Here, we bridge this gap between scien-
tific writing guides more generally and applica-
tions for mathematical manuscripts, providing a
guide specifically for mathematical ecology
papers. We recommend techniques for both

Fig. 1. Both empirical (A) and mathematical ecology (C) often use similar conceptual framings (B) to describe
their overarching questions and research focus. We suggest that explicitly incorporating these conceptual fram-
ings—as is commonly done in oral scientific presentations but less so in manuscripts—can help bridge the gap
between empirical and mathematical ecology. Photographs in (A) are kindly provided by Kathryn A. Cooney.
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authors and readers by which ecologists can
make the mathematical content of papers more
accessible to a broad group of ecologists. To do
so, we provide recommendations for authors
writing mathematical ecology papers and for

readers that are newer to theory and/or computa-
tional ecology. The manuscripts highlighted in
this Special Feature provide concrete examples
across sub-disciplines of applications of best
practices.

Box 1.

Common challenges when communicating mathematical ecology

Clear communication of mathematical ideas to a broad audience presents a set of challenges for authors and
readers alike. In order to make mathematical ecology more accessible, it is important for theoretical researchers to
be aware of the common challenges encountered by empirical researchers and vice versa. Through shared aware-
ness of these challenges, communication may be improved in both directions.

1. Lack of familiarity with previous theory and lack of continuity with literature. Many empirical readers, and likely some
fraction of theoreticians and computational ecologists, will be unfamiliar with prior theoretical work upon
which a current study builds. Brief summaries of the key insights from essential literature are helpful for com-
municating the advances of the present study.

2. Readers may be inexperienced with the mathematical methods used in the paper. As a result, it is prudent to explain in
words what the major steps of the analysis accomplish for readers that do not fully grasp the methods. Simi-
larly, it is critical to define mathematical notation and terms—even if it will be review for researchers familiar
with the previous literature.

3. False sense of mathematical understanding by readers. Readers likely understand some aspects of the material pre-
sented in mathematical ecology papers; without careful reading, this previous knowledge can actually lead to
misconceptions, as assumptions about notation or equations are easily made. As a result, insufficient under-
standing could lead to confusion if theory is misunderstood or misapplied in an empirical context.

4. Equation fatigue. Readers may be less accustomed to following long sections of equations with little explanation.
Each additional equation provides a new opportunity for a reader to start skimming the math or abandon the
paper altogether. Providing clear examples of key parameters from each equation in terms of ecological
responses may help to keep the reader’s attention.

5. Lack of clear connection between biology and math. When a mathematical approach is not properly motivated by a
biological question, it could be difficult to translate theoretical advances back into appropriate biological con-
texts. Consequently, the model may not inspire empirical tests or future theoretical analyses, or the statistical
analysis may not be applied under potentially appropriate scenarios.

6. Unclear or poorly justified assumptions. Empiricists with extensive natural history backgrounds may struggle to
accept or understand the implications of key simplifying assumptions that mathematical ecologists use. Like-
wise, modelers could make poorly justified assumptions that limit the relevance of the model. Lack of justifica-
tion or transparency about assumptions could hinder communication, both of what the model demonstrates
and its limitations.

7. Journal silos. Mathematical ecologists and empirical ecologists largely tend to publish in different journals, with
a few exceptions. As a result, exposure of more discipline-specific advances may be limited to audiences closely
aligned with the authors. For example, hypotheses developed in theoretical papers may not be encountered by
empirical ecologists unless published in a handful of the top journals, while natural history notes that describe
new behavior based on observations or experiments may not receive theoretical investigation. Broader accep-
tance of purely theoretical research in general ecological journals may help bridge the gaps between journal
readership.

8. Mathematical rigor cannot be avoided. Theory can often require a level of technical detail and development that
cannot be omitted or deferred to other references. As a result, authors of complex mathematically oriented
research may be tasked with making their work especially clear and well organized in order to facilitate dissem-
ination into broader ecological disciplines.
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RECOMMENDATIONS FOR AUTHORS

Here, we provide a number of recommenda-
tions for authors of mathematical ecology
papers, drawing on examples from articles in this
Special Feature and the broader literature. Our
intent is to highlight what we consider to be the
best opportunities for authors to improve the
accessibility of mathematical ecology papers,
acknowledging that this is neither an exhaustive
list nor do all suggestions apply equally well to
all manuscripts.

Directly address ecological contexts and relevance
One common criticism of mathematical studies

is that the math is sufficiently abstracted from
the real world as to have limited usefulness for
understanding real systems—or in other words,
that the study is more of a mathematical exercise
than an ecological one. While this may occasion-
ally be true, the history of mathematical models
informing our fundamental understanding of
ecology points to a robust role of mathematical
modeling in advancing the field. As such, the
more common case is a failure by the authors to
communicate effectively to a broad audience.

How can authors of mathematical studies
address this criticism? We suggest that the
authors’ role in overcoming this problem lies in
emphasizing the ecological context and motiva-
tion for theoretical studies. For example, to pro-
vide motivation for their study on tail
associations in distributions of ecological vari-
ables, Ghosh et al. (2020) provide a graphical
depiction of right and left tail associations and
use a previously undescribed example of spring
rainfall to depict plausible ecological scenarios
that could produce different mathematical out-
comes. By pairing relevant mathematical con-
cepts with simple examples in the introduction,
Ghosh et al. (2020) lay the groundwork for the
reader to follow the central thesis of the manu-
script—why tail associations are important to
consider for extinction risks of populations.

Clearly state ecological and mathematical
assumptions

It is particularly important to explicitly discuss
methodological choices and model assumptions
within the manuscript. Doing so allows the
reader to easily determine why a specific model

choice was made, the appropriate empirical con-
texts for applying the model, and where its key
insights may hold. Place justifications for
assumptions and their consequences in ecologi-
cal terms, for example, by envisioning ecological
scenarios in which a given assumption does or
does not give a reasonable approximation of real-
ity. For example, in building their dynamic plant-
pollinator model, Ramos-Jiliberto et al. (2020)
clearly state assumptions about the biology of
the system after each equation. In some cases,
they back up their assumptions based on empiri-
cal observations or previous literature, while in
other cases, they state that a given assumption
was made for model simplicity, rather than bio-
logical realism—an often necessary balance
when building mathematical models of ecologi-
cal processes (Ramos-Jiliberto et al. 2020). Statis-
tical methods also carry their own assumptions,
for example, about the nature of relationships
among variables and how data are distributed,
which likewise should be stated clearly.

Use clear signposting
All papers benefit from clear signposting that

enables the reader to quickly grasp how a paper
is organized, the take-away of each section, and
whether a given section pertains to their own
purposes for reading the manuscript. Given the
volume of literature available, most readers will
not read a manuscript in depth; if they proceed
past the abstract, they will focus on the sections
that are most pertinent to them. They may gloss
over equations and other methodological details,
unless motivated to achieve a deeper under-
standing. As such, it is pragmatic to write papers
in such a way that readers can easily skim and
understand the key components of a mathemati-
cal model or method, while they can dive into
the equations for further detail.
Opening sentences of paragraphs are impor-

tant features of a signposting strategy as they
have a powerful position for establishing the
content and tone of what follows. Likewise, clos-
ing mathematically dense paragraphs with sen-
tences that recapitulate key points in an
ecological context can help ensure understanding
and transition the reader into the next passage.
Other strategies we have found helpful include
the use of descriptive sub-headings and opening
the Methods section with a paragraph giving a
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high-level summary of the methodology. Such a
paragraph typically addresses the general
approach taken by the study and may also
describe how the evidence presented will be
evaluated to form conclusions. The order in
which topics are presented in this paragraph will
often parallel the order of their detailed presenta-
tion further in the methods. As an example,
Ramos-Jiliberto et al. (2020) begin the methods
section with a verbal and graphical overview of
their dynamic plant-pollinator model before they
dig into the details of the equations governing
transitions between life stages. Similarly, Leach et
al. (2020) provide an overview of their modeling
approach, followed by sub-headings within the
methods section that lay out the derivation of
their models, ultimately leading to how they
used this suite of models to investigate stochastic
extinction risk.

Use illustrations and diagrams
Pedagogical illustrations, flowcharts, and dia-

grams can be extremely useful for communicat-
ing complex concepts, the structure of models
(e.g., Fig. 1B), and analytical workflows in ways
that are broadly intuitive to readers of diverse
research backgrounds. Similarly, the Overview,
Design Concepts, and Details (ODD) protocol
(Grimm et al. 2010), a standard for the descrip-
tion of individual-based models, also advocates
for diagrams of model structure. Similar dia-
grams are also useful for empirical studies with
complicated workflows involving multiple steps
or analyses, which may build on each other
toward the paper’s conclusion, or offer parallel
lines of evidence toward inference. Leach et al.
(2020) incorporate an excellent example of the
use of visuals to describe model structure. In
their graphical overview of their approach, Leach
et al. (2020) communicate the flow between the
three core components of their suite of models
(group formation, mating systems, and repro-
duction), using circles and symbols to indicate
group size and mating systems, and colors to
illustrate the stochastic processes considered for
each component.

Clearly define mathematical notation
Arguably, nothing impedes the accessibility of

mathematical ecology papers, even among the
mathematically savvy, like poorly defined,

ambiguous, or unclear notation. Unlike an unde-
fined word or phrase in a paper, it is often
impossible to refer elsewhere for a parameter
definition used in an equation, making it impera-
tive that authors define all notation they use. The
convention for doing so is that all output vari-
ables (also called state variables) are described
before they are first used in an equation, while all
parameters that modify the equation’s dynamics
are defined immediately after the equation first
appears. State variables tend to be defined using
upper-case letters, while parameters tend to be
defined with lower-case and/or Greek letters.
Notation should be consistent within the manu-
script and with the broader literature, if possible
(Scheinerman 2011). Authors should ensure that
similar-looking symbols do not code for dissimi-
lar things.
Despite its importance, it is surprisingly com-

mon that authors do not define all variables in
key equations. Sometimes, this omission reflects
conventions; for example, x very often denotes
taking the mean of some variable x. However,
not all readers may be familiar with such conven-
tions, and standards change from field to field.
For example, in wavelet analysis the overbar has
been used to indicate taking the complex conju-
gate, not the mean (Keitt and Fischer 2006,
Cazelles et al. 2008, Sheppard et al. 2016). Well-
defined notation benefits all readers, especially
as ecologists often draw on models and analyti-
cal approaches developed in disparate fields hav-
ing their own conventions. Tables that provide
easy reference to verbal descriptions of mathe-
matical variables can be especially beneficial to
readers. For example, in their manuscript intro-
ducing a novel method to determine the time-
scales of synchronous versus compensatory
dynamics, Zhao et al. (2020) define all variables
when they first appear in the text, including their
notation for denoting the mean and covariance,
rather than assuming the reader is familiar with
these mathematical notations. Zhao et al. (2020)
additionally provide a summary table for readers
to refer back to while reading.
One area where we see a good deal of room

for improvement is in the consistent use of sub-
scripts and superscripts. Often in ecology, these
aspects of notation clarify whether a variable
changes with respect to space, time, species, or
life stage and hence are vital to the ecological
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concerns of a study. Yet, in many cases subscripts
and superscripts can be used inconsistently
throughout a manuscript, leading to ambiguity
and confusion.

Leverage open access and online supplements
Online publishing and the open science move-

ment have facilitated two particularly important
changes to scholarly publishing that authors of
mathematical ecology papers can, and com-
monly, do to enhance communication of their
science: (1) online supplements and (2) repro-
ducible, archived open-access code.

Historically, the length of scientific papers has
been constrained by space limitations, but recent
trends toward online-only publication and the
use of online supplementary material have eased
such restrictions. The clear opportunity this pro-
vides, as we advocate for and exhibit in this Spe-
cial Feature, is thorough description of
mathematical content and other technical detail.
While this level of detail may not be necessary
for an expert in a given subfield or mathematical
technique, organizing a manuscript such that
these sections can be skimmed by an expert
greatly facilitates readability and synergy
between empirical and mathematical ecology. An
excellent example of the appropriate use of
online supplementary material in this Special
Feature is from Taubert et al. (2020). In their
study on the effects of species traits on grassland
productivity, Taubert et al. (2020) make use of an
individual-based mechanistic model called
GRASSMIND to simulate species pairs that vary
in selected life-history traits. A reader can follow
their general approach easily without diving into
the technical details of the GRASSMIND model;
however, the authors also provide a robust and
well-notated supplementary material for readers
who may be interested in examining the model
in more depth.

We argue, however, against hiding key mathe-
matical details in the Supplementary Material. In
many studies, these represent a key research
innovation, and burying them in an online sup-
plement both gives short shrift to the authors’
efforts and misses the chance to share these inno-
vations with readers. The supplement provides
an excellent opportunity to provide additional
detail to facilitate readability, such as an instruc-
tional guide that reviews key theories or

historical mathematical derivations that may
help readers translate between the focal manu-
script and previous work (Melbourne and Hast-
ings 2008).
Just as publishing data are becoming a require-

ment at many journals due to the current, excit-
ing focus on open science, authors should
publish well-annotated code for all mathemati-
cally focused manuscripts in open access reposi-
tories. We recommend publishing well-
commented code for recreating all analyses
included in the manuscript; code should include
a ReadMe file to document the project and
should be published in a code repository with a
persistent identifier (i.e., DOI), such as Zenodo.
The widespread use of languages like R by

ecologists for data management, statistical analy-
sis, and simulation modeling suggests that many
ecologists may now have greater facility at read-
ing code than at reading equations. Additionally,
it is often challenging to translate code into ver-
bal descriptions in a manuscript, so having refer-
ence code for readers will assist with overcoming
any ambiguity that may accidentally arise. An
advantage to reading and interacting with code
is to see how a model or method becomes opera-
tional. Better yet, many authors have supple-
mented their manuscripts with extensive code
embedded in a long-form narrative document
(e.g., RMarkdown or Jupyter notebooks) that
allows readers to interact with code, alter param-
eters, learn new computational techniques, and
reproduce entire analyses. Likewise, graphical
interfaces can make code more interactive (e.g.,
Shiny apps), which can extend the utility of code
beyond reproducibility and transparency into a
tool for learning quantitative approaches or
exploring scenarios beyond the focus of the
manuscript.

RECOMMENDATIONS FOR READERS

Communication of mathematical ecology is a
two-way street, where both the author and the
reader share responsibility (Fawcett and Higgin-
son 2012b). As such, here we present recommen-
dations for readers, drawing from our own
experiences and training. These suggestions
apply broadly and are the key steps we continue
to apply, especially when reading papers outside
of our own domains of expertise.
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Expect to spend extra time engaging with math
Reading math is challenging and time-

consuming, even for experts. While training and
experience make it easier, especially when read-
ing outside of one’s immediate area of expertise,
it will always take time to engage deeply with a
mathematically complex study. This remains true
even for those who self-identify as mathematical
ecologists; many areas of mathematics are rele-
vant to our field, but we may be most comfort-
able in only one or two, and we frequently
encounter new approaches that take time and
effort to familiarize ourselves with. This may
involve breaking down equations, consulting
textbooks or references on the technique, or read-
ing through and running accompanying open-
access code. This need to spend extra time to dee-
ply engage with the details of a paper is, of
course, not unique to mathematical papers; deep
engagement with any science requires time and
effort. For example, one can quickly read an
experimental protocol for a general understand-
ing, but to replicate a study, it takes far more
time to understand each part of the protocol.

Reread papers
It is rare that a single read-through of a highly

mathematical paper will reveal all the intricacies
of the study. In fact, it may be unwise to try to
understand all the math upon an initial read.
Instead, it may be beneficial to first read for an
overview of the aims, general approach, and
assumptions of the model or statistical technique.
Then, once the broad overview is established,
there is a clearer mental scaffold upon which the
detailed, technical sections of the paper can be
built. Subsequent reads (in combination with the
below recommendations) will gradually reveal
the intricate and challenging aspects of the
manuscript.

Learn with peers
Most scientists benefit from meeting in small

groups (seminar courses, lab groups, journal
clubs) to discuss peer-reviewed articles. Group
paper discussion is often one of the best ways for
scientists at all levels to improve learning com-
prehension and tackle complex ideas. Often-
times, there is a tendency within ecology reading
groups to avoid choosing papers with too many
equations. We encourage reading groups to not

steer away from papers with ample mathemati-
cal content and, to instead, spend time as a group
breaking down equations and discussing the bio-
logical meaning of model parameters. When dis-
cussing methods that are newer to the group, it
is often helpful to pair the paper discussion with
a reading from a textbook or a review paper of
the method to provide additional technical back-
ground. Good paper discussion groups provide
a relaxed environment for peers with diverse
perspectives and expertise to teach one another.
Mathematical concepts that are challenging for
some members of the group may come easily for
others, which they can then explain in their own
words. Early career scientists in particular will
benefit from knowing that scientists at all levels
struggle with new mathematical techniques.

Break equations down into their components
Mathematical equations are often presented

holistically, making it appear that the authors sat
down and immediately wrote a final, complete
model or computational method. Rather, most
equations are built component by component,
starting from a conceptual formalization of ques-
tion or topic (Fig. 1B), previous work in the liter-
ature, and gradually building to formal notation
and the final form presented in a peer-reviewed
publication.
To increase understanding as a reader, we sug-

gest breaking apart equations into their individ-
ual components. To do so, the reader can print
the pages with the equations and tables defining
parameters and directly annotate equations. We
suggest first writing out in words what is being
modeled (i.e., what is to the left of the equal
sign). Next, define each component at its most
general. For example, population size is often
modeled as some form of “births - deaths +
immigration - emigration.” Additional complex-
ity arises from the countless ways to describe
each of these components and their interdepen-
dencies. Finally, the assumptions behind each
given process, and their corresponding parame-
ters, can be interpreted for full understanding.
Building upon the example above, does popula-
tion size increase exponentially or logistically?
Does population size explicitly depend on intra-
and interspecific competition? Are stochasticity
or other forms of variability explicitly incorpo-
rated into the model? Depending on your

 v www.esajournals.org 8 August 2021 v Volume 12(8) v Article e03701

SPECIAL FEATURE: EMPIRICAL PERSPECTIVES FROM MATHEMATICAL ECOLOGY SHOEMAKER ET AL.



interest in the paper, you may want to dive into
these underlying mathematical assumptions, or
alternatively, just focus on the key components
incorporated into an equation.

Connect to a general class of well-understood
model

Science proceeds by building step-by-step on
prior work, and mathematical ecology is no dif-
ferent. One strategy for greater understanding of
the developments of a particular study is to draw
connections between it and a general class of
foundational models whose behaviors are well-
understood and often are well described in basic
resources (e.g., textbooks, Wikipedia, or review
articles). By comparing and contrasting a particu-
lar model with its more general “family of mod-
els,” the meanings of terms, expected behaviors,
and new developments often become clearer.
Notably, this strategy assumes some familiarity
with foundational theory and statistical methods,
which may still be a barrier for some readers.

Foundational papers may not be the best way to
understand foundational models

Often, we read foundational papers to under-
stand how an important idea was introduced to
the field, but sometimes aspects of these papers
make comprehension difficult. For example,
standard terminologies and conventions on the
structure and tone of scientific articles have
evolved over time, and text often contains refer-
ences to controversies ongoing at the time it was
written, but that are opaque to modern readers.
Papers about foundational theoretical and statis-
tical models are similar and may be especially
difficult for many ecologists to read if written for
a math specialist audience.

Consulting a textbook can often be a more effi-
cient way to understand models. Subsequent
work addressing the full behavior of a model,
and its strengths and weaknesses, will likely be
addressed in language tailored for a broader
audience, especially if the book is written for
ecologists. In some cases, the method or
approach itself may have sufficiently diverged
from its initial conceptualization that the founda-
tional paper is no longer an authoritative refer-
ence for how the model should be applied or
analyzed. Wikipedia can also be a good resource.
Many foundational ecological models, such as

the Lotka-Volterra equations mentioned previ-
ously, have pages with relatively clear and deep
explanations, with references to primary litera-
ture and standard texts that facilitate further
learning. We note, though, that many Wikipedia
pages for statistical methods lean toward the the-
oretical, as opposed to the applications that
many ecologists are interested in, and also that
the quality of Wikipedia entries can vary sub-
stantially as a function of author expertise and
time invested. Further contributions by experts
in ecology could enhance this resource.

Reconstruct models and explore parameter space
Many times, trying to fully understand a

model in the context of the original publication
may not be the optimal way to engage with
mathematical content. Just as you truly and dee-
ply only understand an empirical method by
implementing it yourself, the same is true for
mathematical models. If coding your own ver-
sion of a published model, we recommend first
using the parameter values from the published
paper to replicate figures and verify that your
code is correct. Once the model has been care-
fully implemented in the modeling platform, it is
often instructive to explore parameter space.
Investigate what happens to the model output as
you dial up and down parameter values. Which
parameters are the model most sensitive to?
Which parameters have relatively little influence
on the outcome? This exercise also helps connect
your own biological intuition with the underly-
ing model assumptions.

CONCLUSIONS

Mathematical ideas permeate ecology. Not
only does math allow ecologists to explore new
questions and generate hypotheses about how
the natural world works through theory, mathe-
matics also enable the development of statistical
tools that ecologists use to test predictions and
gain insight from complex patterns in empirical
data. Conversely, empirical studies provide
ground tests for previously developed theories
and lay the foundation for new hypotheses.
Thus, it is crucial that mathematical concepts be
clearly communicated to both theoretical and
empirical ecologists alike. In this piece, we
acknowledge common challenges in the effective
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communication of mathematical concepts in
research articles. To help overcome these chal-
lenges, we provide a suite of recommendations
for both authors and readers that we believe
would foster greater collaboration between
mathematical and empirical ecologists, accelerate
progress, and integrate a broader range of per-
spectives in the field. In particular, we note that
it is essential for readers to understand the eco-
logical context of theoretical papers and suggest
that authors establish this context early on, using
clear signposting, consistent notation, and visual
aids to alert the reader to important biological
insights established in the equations. For readers,
persistence is key no matter how comfortable
you are as a mathematical ecologist; it may take
additional time and readings to fully digest the
mathematical content, breaking down equations
and making connections to existing, more famil-
iar models. But this extra effort, either alone or
with peers, will be important for becoming more
familiar and comfortable with mathematical
equations in papers. An important outcome of
clear writing in mathematical ecology is
increased synthesis between the theoretical and
empirical literature that, together, will promote
novel research aims and interdisciplinary collab-
orations.
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